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Abstract

A numerical study is made of the ®nite-wall e�ect in the benchmark-con®guration buoyant convection in a square

cavity at large Rayleigh number. A general formulation, with one vertical sidewall of ®nite thickness and thermal
conductivity, is presented. Firstly, the ®nite-wall e�ect for the case of non-pulsating boundary temperature condition
is delineated. The energy balance consideration, together with the preceding empirical correlations, leads to a simple
formula to predict the temperature at the interior surface of the ®nite-thickness wall. The analytical predictions are

shown to be consistent with the results of full-dress Navier±Stokes numerical solutions. Secondly, the ®nite-wall
e�ect for the case of pulsating boundary temperature condition is explored. The numerical results illustrate that the
amplitude of oscillating Nusselt number, A(Nu ), at the central plane peaks at a particular pulsation frequency. This

has been interpreted to be a manifestation of resonance. The ®nite-wall e�ect on the shift of resonance frequency is
discussed. The temperature oscillation at the interior surface of the solid wall is examined, and the convection-
modi®ed model is introduced to describe the alteration in the temperature contrast across the ¯uid portion. The

estimation of the resonance frequency, based on the internal gravity oscillations, is shown to be in accord with the
Navier±Stokes numerical solutions. 7 2001 Published by Elsevier Science Ltd.

1. Introduction

Buoyancy-driven convection in an enclosure consti-

tutes a classical problem. In particular, convection in a

square cavity, with its two vertical sidewalls main-
tained at di�erent but constant temperatures, poses a

benchmark con®guration ([1]). Steady ¯ow and heat

transfer characteristics have been thoroughly documen-

ted for large system Rayleigh numbers Raw1, which
are relevant to technological applications.

Recent studies have dealt with the buoyant con-
vection when the imposed thermal boundary con-
ditions are periodic in time [2±9]. Speci®cally, the

responses of the con®ned ¯uid, when the heat ¯ux
or the temperature speci®ed at one vertical wall var-
ies periodically, are of concern. Numerical simu-

lations and experiments have established that the
buoyancy-driven convective activity in the cavity is
intensi®ed at certain discrete frequencies of the oscil-

lation of the boundary condition. This has been
termed resonance, which is characterized by attain-
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ing the maximum amplitude of heat transfer rate

through the vertical midplane of the cavity [3]. For

the cavity con®guration in which a periodic heat

¯ux was imposed on one vertical wall, while the

other wall was at constant temperature, Lage and

Bejan [3] demonstrated the existence of resonance.

Also, the resonance frequency was estimated by

matching the period of the oscillation of the bound-

ary condition to the circulation time of a ¯uid

wheel within the enclosure. The resonance frequency

thus obtained was shown to be in order-of-magni-

tude agreement with the numerical results. In a

similar development, Kwak and Hyun [7] made an

in-depth re-examination of the cavity model orig-

inally proposed by Kazmierczak and Chinoda [2].

The temperature at the cold vertical wall was con-

stant, and the temperature at the hot vertical wall

varied periodically with frequency o. Numerical sol-

utions illustrated the presence of resonance, and the

resonance frequency was found by searching for the

basic mode of internal gravity oscillation in the in-

terior region [8,9]. In summary, the resonance

phenomenon in con®ned buoyant convection points

to potentially innovative thermal technological

devices, which could lead to signi®cant management/

enhancement techniques of heat transfer.

In an e�ort to move closer to realism, it is proposed

here to study the e�ect of ®nite thickness and imper-

fect thermal conductivity of the boundary wall. The

canonical model of de Vahl Davis [1], Kazmierczak

and Chinoda [2] and Kwak and Hyun [7] takes the ver-

tical wall of the cavity to be an in®nitely thin and per-

Nomenclature

Ar cavity aspect ratio (0H/L )
AW non-dimensional wall thickness (0D/L )
C speci®c heat at constant pressure

Ci strength of strati®cation
D thickness of the solid wall
f dimensional frequency of the exterior-wall

temperature oscillation
fm modifying factor
g acceleration due to gravity

H height of the cavity
k, kr thermal conductivity, thermal conductivity

ratio (0ks/kf )
L length of the ¯uid region

N Brunt±VaÈ isaÈ laÈ frequency
Nu average Nusselt number
p, P dimensional, dimensionless pressure

(0( p+rogy )H
2/rok

2Ra Pr )
Pr Prandtl number (n/k )
Ra external Rayleigh number (0ag(Te ÿ TC)H

3/

nk )
Rai internal Rayleigh number (0ag(Ti ÿ TC)H

3/
nk)

SC non-dimensional thermal conductance (0kr/
AW)

t dimensional time
T dimensional temperature

TC temperature at the cold wall
DT temperature di�erence (0(Te ÿ TC))
DTe amplitude of the wall temperature oscillation

at the exterior surface
DTi amplitude of the wall temperature oscillation

at the interior surface

u, v velocity components
U, V dimensionless velocity components (0(u,

v )(Ra Pr )ÿ1/2H/k )
x, y coordinates
X, Y dimensionless coordinates (0x/H, y/H )

Greek symbols
a volumetric expansion coe�cient

b temperature transfer ratio (0(Ti ÿ TC)/
(Te ÿ TC))

e dimensionless amplitude of the wall tempera-

ture oscillation (0DTe/DT )
ed dimensionless amplitude of temperature os-

cillation in the solid wall
g phase shift of wall temperature oscillation

k thermal di�usivity
n kinematic viscosity
r density

(rC )r heat capacity ratio (0(rC )s/(rC )f )
y dimensionless temperature (0(T ÿ TC)/

Te ÿ TC))

t dimensionless time (0t(Ra Pr )1/2k/H 2)
td conductive time scale of the solid wall
tp dimensionless period of the wall temperature

oscillation
o dimensionless frequency of the wall tempera-

ture oscillation (0f/N )
or resonance frequency

Subscripts
f ¯uid

e, ext exterior surface of the solid wall
i, int interior surface of the solid wall
r ratio of solid property to ¯uid property

s solid
o reference
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fectly conducting plate. Therefore, in realistic engineer-
ing situations, an investigation is warranted to delin-

eate the ®nite-wall e�ect on the ¯uid response to the
externally applied periodic temperature condition. In
particular, the above-described resonance phenomenon

under practical circumstances is worthy of a systematic
evaluation.
The ®nite-wall e�ect was addressed mostly in the

context of steady-state buoyant convection problems,
largely by relying on numerical solutions [10±13]. In
the present work, numerical studies was made to depict

the time-dependent buoyant convection in a square,
subject to a periodically varying temperature condition
imposed at the exterior surface of a vertical wall of
®nite thickness and thermal conductivity. Pertinent

dimensionless parameters are identi®ed, and the main
characteristics of oscillating heat transfer are ascer-
tained, in particular, in reference to the resonance

phenomenon.
In the ®rst stage, the general formulation and results

for non-pulsating boundary temperature conditions are

presented. Next, the results for pulsating boundary
temperature conditions will be addressed.

2. The model

The ¯ow layout is sketched in Fig. 1. A rectangular
cavity of width L and height H is ®lled with a Boussi-
nesq ¯uid, which satis®es the linear density-tempera-

ture relation, i.e. r=ro[1ÿa(TÿTo)]. The top and
bottom horizontal walls are thermally insulated, and
the cold left wall is maintained at temperature TC. The

hot right wall is of thickness D, and at the exterior
surface of this wall, the pulsating temperature

Text=Te+DTe sin ft is imposed. The externally con-
trollable temperature di�erence DT (0TeÿTC)> 0, and

DTe and f, respectively, denote the amplitude and fre-
quency of the oscillating part of the exterior surface
temperature. The physical properties are taken to be

constant at the reference temperature To [0(Te+TC)/
2].
For the ¯uid, the governing time-dependent Navier±

Stokes equations, in properly non-dimensionalized
form, read
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For the solid wall, the temperature equation is

Fig. 1. Schematic of ¯ow con®guration.
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@ f�rC �ryg
@t

� kr

�
1

Ra Pr

�1=2�
@ 2y
@X 2

� @ 2y
@Y 2

�
: �5�

The associated boundary conditions are

U � V � @y
@Y
� 0 at Y � 0, 1; �6a�

U � V � y � 0 at X � 0; �6b�

U � V � 0, y � 1� e sin�ot� at

X � 1� AW

Ar

�6c�

ys � yf , ks
@y
@X

�
solid

� kf
@y
@X

�
fluid

at X � 1=Ar: �6d�

In the above, the non-dimensionalization schemes were
the same as in Kwak and Hyun [7]; i.e.

t � t�Ra Pr�1=2 k
H 2

, �X, Y � � �x, y�
H

, �U,

V � � �u, v��Ra Pr�ÿ1=2 H

k
, y � Tÿ TC

Te ÿ TC

,

P � � p� rogy�H 2

rok 2Ra Pr

�7�

Notice that time has been made dimensionless by using
the reciprocal of the representative Brunt±VaÈ isaÈ laÈ fre-

quency, N, which is de®ned as

N �
�
ag�Te ÿ TC�

H

�1=2
� �Ra Pr�1=2 k

H 2
: �8�

In the course of non-dimensionalization, the dimen-

sionless parameters emerge: the Rayleigh number,
Ra=ag(TeÿTC)H

3/nk; the Prandtl number, Pr=n/k;
the ratio of thermal conductivities, kr0ks/kf ; the ratio

of thermal capacities, (rC )r 0 (rC )s/(rC )f ; the cavity
aspect ratio Ar0H/L; the non-dimensional wall thick-
ness AW 0 D/L; the dimensionless amplitude (e ) and

frequency (o ) of oscillation of the exterior surface
temperature, e0DTe/(TeÿTC); o0f/N.
The above equations were solved numerically by

adopting the ®nite volume method, utilizing the well-

established SIMPLER algorithm [14]. The non-linear
advection terms were discretized by using the QUICK
scheme [15], and the SIP solver [16] was incorporated

in solving the discretized equations. Typically, a stag-
gered grid network of (82� 62) was deployed in the x±
y plane for the ¯uid; for the solid wall, the grid points

were (20� 62). Grid points were clustered in the vicin-
ities of the horizontal and vertical walls as well as near
the exterior and interior surfaces of the solid wall.

In the present solution procedures, a conjugate-type
problem was cast for the combined domain of ¯uid

and solid. In the solid portion, the viscosity was set to
have a very large value, and, therefore, the velocity
practically vanishes. The computational time step was

Dt=2p/(1000o ), and an even smaller value of Dt was
employed when o was small. At each time step, con-
vergence was declared when the relative di�erences in

U, V and y between two successive iterations fell below
10ÿ4. The quasi-steady periodic ¯ow was judged to
have been attained when the average Nusselt numbers

at the cold wall (X = 0), mid-plane (X = 0.5/Ar), in-
terior surface (X = 1/Ar) and exterior surface
(X=(1+AW)/Ar) of the hot wall di�ered less than
10ÿ3 from the corresponding values at the previous

cycle. As remarked, only the quasi-steady periodic
¯ows are of concern, and the transitory approach to
this quasi-periodic state is not of primary interest. In

order to ascertain the accuracy and robustness of the
present numerical methodology, wide-ranging grid-
and time-step convergence tests were executed. Also,

calculations were repeated for the problems for which
published results were available for comparison
[7,10,13] both for steady and time-dependent ¯ows.

The outcome of this exhaustive series of tests and
cross-comparisons proved the e�ectiveness and re-
liability of the present numerical techniques.
The following parameters were ®xed in order to

focus on the time-dependency of the ¯ow, i.e. Ra =
107; Pr = 0.7; (rC )r=1; Ar=1; AW=0.1; e=1; 0.1 R
kr R 100; and 10ÿ2 R o R 100 (see, Kwak et al. [8],

Chung and Hyun [13]). The values of kr in technologi-
cal applications range from 2.8 � 10ÿ3 (silica aerogel/
mercury) to 1.4 � 105 (diamond/freon-12). The value

kr=0.1 may be found in wood/water combinations. In
the present e�orts, the purpose is to understand the
fundamentals of transport phenomena as in¯uenced by
pertinent ¯ow parameters, rather than acquiring practi-

cally useful engineering data.
It is advantageous to introduce the de®nitions below

to describe the time-dependent process [7]:

f� � fÿ fss

fss

, A�f� � Maxff�t�g ÿMinff�t�g
2

for t0RtRt0 � 2p
o
, �f �

�t0��2p=o�
t0

f�t�dt
�2p=o� ,



f
� � �1

0

f dY:

�9�

In the above, f stands for a physical variable; and

subscript ss denotes the case of time-independent
boundary condition, i.e. e=0. The amplitude and
cycle-mean value of the oscillating f are represented,
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respectively, by A(f ) and �f, and the vertically aver-
aged value of f is shown by hfi.
The instantaneous, y-plane averaged heat transfer

rate for the present conjugate system at an arbitrary
vertical plane X=a can be expressed by the Nusselt

number in the ¯uid region, i.e.

Nu�X�a �
1

Ar

�
SC � 1

SC

��1
0

�
@y
@X

ÿ �Ra Pr�1=2Uy

�
X�a

dY, �10a�

where SC0kr/AW, which denotes the non-dimensional
thermal conductance.
At the interior surface of the wall (X = 1/Ar), Nu

can also be computed by the temperature gradient in
the solid portion,

NuX�1=Ar
� kr

Ar

�
SC � 1

SC

��1
0

�
@y
@X

�
X��1=Ar��

dY: �10b�

Obviously, the di�erence between the height-averaged
temperature Tint at the interior surface (X = 1/Ar),

and Text (0Te+DTe sin ft ) at the exterior surface
(X=(1+AW)/Ar) of the wall re¯ects the ®nite-wall
e�ect. It is known that, inside the solid, the tempera-

ture ®eld is principally a function of x, and the y-
dependency of temperature is mild (see [11,17]). The
ratio of the cycle-averaged values of Tint and Text,

above the constant cold-wall temperature, is denoted
by b, i.e.

b � Ti ÿ TC

Te ÿ TC

The conventional de®nition of the Nusselt number
Nuf for the ¯uid-only cavity can be re-written as

Nuf � 1

Ar

�1
0

�
@ �y=b�
@X

ÿ �Ra Pr�1=2U y
b

�
X�a

dY

� 1

b

�
SC

SC � 1

�
NuX�a: �11�

In the limit of an in®nitely thin, perfectly conducting
wall, i.e. for the benchmark model [1], SC41 and b
4 1.0, thereby NufcX�1=Ar

4Nu�X�1=Ar
:

3. Results

3.1. Steady-state (e=0) temperature at the interior
surface of the wall

Here, the ®nite-wall e�ect for the non-pulsating
boundary condition (e=0) is delineated. The key quan-
tity is the temperature at the interior surface of the

wall, hTii��
� 1
0 y�X � 1=Ar, Y �dY �: In the steady state,

the energy balance calls for"�H
0

kf

�
@T

@x

�
x�L

dy

#
fluid

�
"�3:H

3:0

ks

�
@T

@x

�
x�L

dy

#
solid

, �12�

which leads to the following relationship, with the
afore-described temperature pro®le T(x ) in the solid,�1
0

�
@y
@X

�
X��1=Ar� ÿ

dY � SC�1ÿ b�: �13�

Therefore, the conventional Nusselt number Nuf ,
de®ned for the ¯uid-side at the interior surface, is

Nuf � 1

Arb

�1
0

�
@y
@X

�
X��1=Ar� ÿ

dY � SC�1ÿ b�
Arb

�14�

For steady-state buoyant convection, with the ®nite-

wall e�ect incorporated, several preceding reports pro-
vided empirical relations stipulating Nuf . For example,
Kaminski and Prakash [11], by employing a lumped

parameter approach, arrived at an expression for Nuf
as a function of Rai, i.e. the internal Ra based on the
temperature di�erence over the ¯uid portion,

Rai=ag(TiÿTC)H
3/nk. A more comprehensive formula

was derived here by generalizing the correlation of Ber-
kovsky±Polevikov [17] to account for the variations in
Pr and Ar, i.e.

Fig. 2. Estimation of the temperature Ti at the interior surface

of the wall. Lines denote results from Eq. (16), and symbols

show the full numerical computations. Ð, Ra = 104; - - - -,

Ra= 105; ± -± - ±, Ra= 106; ± - - ±, Ra=107; ± ± ±, Ra=

108; Ð, Ra= 109; q, Ra= 104; t, Ra= 105; w, Ra= 106;

y, Ra=107; r, Ra=108; ., Ra=109.
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Nuf � 0:18

�
Pr

0:2� Pr
Rai

�0:29

A0:13
r , �15�

for which, 1.0 < Ar < 2.0, 10ÿ3 < Pr < 105, (Pr/
0.2+Pr )Rai A

ÿ3
r > 103.

Combining Eqs. (14) and (15) yields

0:18

�
Pr

0:2� Pr
bRa

�0:29

A0:13
r � SC�1ÿ b�

Arb
: �16�

Eq. (16) poses a non-linear algebraic equation for
the unknown b. By resorting to the interpolation

method, numerical solutions can be acquired for b for
a given set of (Ra, SC) in Eq. (16). Exemplary results
for the solutions to Eq. (16) are exhibited in Fig. 2 in

lines, and, for comparison purposes, the results based
on the full numerical solutions to the Navier±Stokes
equations (Eqs. (1)±(5), (6a), (6b), (6c) and (6d)), are
also illustrated by symbols. It is evident that the results

from Eq. (16) and the Navier±Stokes solutions are in
close agreement. The foregoing exercises give credence
to the validity of the above simple analysis, which basi-

cally assumes a one-dimensional-type heat conduction
in the horizontal direction within the ®nite-thickness
solid wall. It also underscores the fact that, for the

given externally speci®ed parameter set, the height-
averaged temperature Ti at the interior surface as well
as the e�ective heat transport rate can be estimated by

solving the algebraic Eq. (16). It is instructive to have
physical interpretations of the qualitative behavior of
b. As mentioned earlier, when the wall thickness is
vanishingly thin (AW 4 0) or the thermal conductivity

of the solid is very large (kr 41), the parameter SC

41, which leads to b 4 1, i.e. Ti 4 Te as shown in
Fig. 2. Obviously, this corresponds to the standard

benchmark model [1]. In the opposite limit of a very
thick wall (AWw1) or a poor thermal conductor (kr:
small), SC becomes small, which indicates that the tem-

perature contrast (Ti ÿ TC) over the ¯uid portion is
substantially reduced. In this limiting case, the bulk of
the externally imposed temperature di�erence (Te ÿ
TC) is consumed to o�set the temperature drop over

the solid wall (Te ÿ Ti). For a given value of SC, the
in¯uence of Ra is of interest. When Ra is large, con-
vection is the primary element in the ¯uid. In order to

conserve the same amount of heat transport in both

Fig. 3. The amplitude and cycle averaged value of Nu � vs. o,
with di�erent kr. Ra = 107, Pr = 0.7, and e=1.0. (a) A(Nu �)
at the center of cavity (X=0.5/Ar); (b) A(Nu �) at the interior

surface of the wall (X = 1.0/Ar); and (c) Nu� (cycle-averaged

gain).

Table 1

Major parameters for the four cases computed

Case kr td �ed=ei�i,or b or Ci

1 100 0.2646 0.962 0.982 0.77 1.113

2 10 2.646 0.633 0.854 0.68 0.876

3 1 26.46 0.085 0.418 0.46 0.431

4 0.1 264.6 10ÿ4 0.098 ± 0.101

K.H. Chung et al. / Int. J. Heat Mass Transfer 44 (2001) 721±732726



the ¯uid and solid regions, the relative magnitude of
(Ti ÿ TC) decreases in comparison to (Te ÿ Ti). These

rationalizations are consistent with the temperature
data displayed in Fig. 2.

3.2. The ®nite-wall e�ect on time-dependent interior
convection (e$0)

The prominent ¯ow characteristics in the quasi-
steady periodic state are now examined. Speci®cally,
four values of kr, in the range 0.1 R kr R 100, are

selected for full Navier±Stokes numerical computations
(see Table 1).
The e�ect of the ®nite-thickness wall may be gauged

by the conductive timescale td for a solid of thickness
D and of thermal conductivity ks, td=D 2(rC )s/ks. In
accordance with the present scheme of non-dimen-

sionalization, the dimensionless conductive time scale
td can be expressed as

td � �rC �r
kr
�Ra Pr�1=2

�
AW

Ar

� 2

: �17�

The values of td are listed in Table 1 for the cases

computed.
The series of comprehensive numerical results are

processed to illustrate the behavior of A(Nu�), i.e. the
amplitude of the oscillating, y-averaged Nusselt num-
ber Nu�, versus the imposed pulsation frequency o.
Following the procedure of Lage and Bejan [3], the

plots in Fig. 3a are for the central plane (X= 0.5/Ar).
It is discernible that A(Nu�) at the central plane shows
a peak at a particular value of o. The existence of

such a peak in A(Nu�) was interpreted to be resonance
[3,7]. The present results under the ®nite-wall e�ect are
consistent with the above-stated well-established con-
cept of resonance, which had been discussed in the

case of a completely conducting, in®nitely thin wall
(this case will hereafter be referred to as the canonical
model of Kazmierczak and Chinoda [2]). For kr=100,

resonance is seen at or 3 0.77, which is almost identi-
cal to the value of the resonance frequency for the
canonical model [8]. This is not unexpected since, as

emphasized earlier, when kr is very large, the dynami-
cal role of the wall becomes similar to that of the
canonical model. The numerical data of Fig. 3a show
that, as kr decreases, the peak value of A(Nu�)
decreases and the resonance frequency also decreases
slightly. These explicit manifestations of the ®nite-wall
e�ect will be probed in the following sections.

It is also interesting to inspect the A(Nu�)±o plots at
the interior surface of the wall (X=1/Ar), as exhibited
in Fig. 3b. Here, it must be noted that the information

at the interior surface is important for the ¯uid convec-
tion because the ¯uid feels directly the pulsating
boundary condition at the interior surface. When kr is

very large (kr=100), A(Nu�) gradually increases with o
for o < or and increases steeply for o > or. This is

consistent with the canonical model. But, as kr
becomes smaller, di�erent results are shown. When
kr=10, A(Nu�) remains fairly uniform with o. More-

over, for smaller values of kr, A(Nu�) slightly decreases
with o. The conductive-penetration timescale td for
large kr is smaller than the period of pulsation (2p/o );

thus, the thermal impact that is delivered at the in-
terior surface of the wall is less a�ected by the ®nite
wall. On the contrary, when kr is small, td is larger

than the period of pulsation; thus, the entire thermal
impact can not be felt throughout the wall during a
period of pulsation. In particular, for large o, the
period of pulsation becomes much smaller, and the

®nite-thickness wall acts like a regulator or a damper
to attenuate the externally applied rapidly varying
thermal loading. The alterations in boundary tempera-

tures tend to be restricted to a small distance into the
wall from the exterior surface. For the ¯uid in the
neighborhood of the interior surface, the changes in

the external temperatures are not felt, and A(Nu�)
becomes vanishingly small. The gain in heat transport,
time-averaged over a cycle, relative to the non-oscillat-

ing case is exhibited in Fig. 3c. When kr is large, ap-
preciable gains in Nu� are seen. However, as kr
decreases, the gain in time-averaged heat transport is
meager, as can easily be anticipated.

3.3. Temperature oscillation at the interior surface of
the wall (e$0)

When the temperature at the exterior surface of the
wall yext contains a pulsating component, i.e. e$ 0 in
Eq. (6c), the corresponding non-dimensional height-

averaged temperature at the interior surface of the wall
yint (at X=1/Ar) can be written as

yint � b� ei sin�ot� gi � �18�
in which ei and gi denote, respectively, the amplitude
and phase lag of the pulsating part of yint.
The strategy here is to consider, in the ®rst stage,

the case when the thickness of the wall is very large,
AWw1. Then, yint can be determined by obtaining an
analytical solution to the conduction equation. In the

next stage, when the thickness of the wall is ®nite, yint
will be determined by allowing modi®cations due to
convective activities in the ¯uid-portion of the cavity.

3.3.1. For a large-thickness wall (AWw1)
The non-dimensionalized, one-dimensional versions

of Eqs. (5) and (6c) read

@ f�rC �ryg
@t

� kr

�
1

Ra Pr

�1=2
@ 2y
@X 2

, �19�
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subject to

y
�
1

Ar
�1� AW�, t

�
� 1� e sin�ot�, and

y�X, t� � finite

�20�

This problem setup is analogous to the well-docu-

mented Stokes' second problem (e.g. Schlichting [18]),
which describes the response of an in®nite viscous ¯uid
to a rectilinearly oscillating in®nite ¯at plate.

The solution to Eqs. (19) and (20) is found

y�x, t� � 1� e exp

8<:ÿ
�����������������
�rC �ro
2kr

s
�Ra Pr�1=4x

9=;
sin

8<:otÿ
�����������������
�rC �ro
2kr

s
�Ra Pr�1=4x

9=;,
�21�

in which x0 (1+AW)/ArÿX. Consequently, the ampli-
tude of temperature oscillation ed at an arbitrary lo-
cation x=xd inside the wall is shown to be

ed

e
� exp

8<:ÿ
�����������������
�rC �ro
2kr

s
�Ra Pr�1=4xd

9=;
� exp

(
ÿ

���������
otd

2

r )
, �22�

in which td indicates the (dimensionless) conduction
timescale as shown in Eq. (17).
It follows that the distance x=d from the exterior

surface to the location where ed/e falls to 1/e 2 can be
estimated to be

d � 2

�����������������
2kr
�rC �ro

s
�Ra Pr�ÿ1=4: �23�

The applicability of the above-stated large-thickness

model is subject to veri®cation. Exemplary results for
ed/e calculated based on Eq. (22) are compared in
Fig. 4 against the numerical data obtained by solving
the full Navier±Stokes equations. As is clear, when

kr=1 (see Fig. 4a), the results of the large-thickness
conduction model are in close agreement with the com-
plete numerical solutions. This implies that, in this

case, the determination of the solid interior tempera-
tures is dominated by conduction. It is evident that ed
decays fast as the distance from the exterior surface

increases. As kr increases (see Fig. 4b for kr=10), ed/e
determined from the Navier±Stokes equations takes
larger values than that from Eq. (22), re¯ecting the

fact that the exterior-surface temperature penetrates
with more ease into the solid. Since both yint and ed
are not small, buoyant convective activities in the ¯uid
are invigorated. Therefore, the discrepancy between

the conduction-based large-thickness model of Eq. (22)
and the full y-dependent Navier±Stokes numerical sol-
ution is appreciable. Also, because convection plays a

bigger role, ed takes larger values at higher vertical lo-
cations (large y-values) in Fig. 4b. The inadequacy of
the large-thickness conduction model is apparent when

kr is very large (see Fig. 4c for kr=100). In this case,
the solid wall approaches a perfect conductor; there-
fore, the di�erence between yext and yint narrows, i.e.
ed/e 4 1, and the y-dependence is relatively weak.

Alternatively stated, due to the largeness of ks, the
penetration time for the thermal e�ect to travel across
the wall is much smaller than the period of pulsation

of yext. As expected, when kr is very large, the imposed
boundary condition tends to the idealized perfectly

Fig. 4. Pro®les of the amplitude of the oscillating temperature inside the solid wall. Ra=107, o=0.6. Solid lines denote the results

of Eq. (22). The Navier±Stokes numerical results are: ± -± - ±, Y= 0; ± ± ± ±, Y= 0.5; and ± - - ±, Y= 1. (a) kr=1; (b) kr=10;

and (c) kr=100.
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conducting wall. Accordingly, for krw1, the discre-
pancy between the large-thickness conduction model of

Eq. (22) and the full numerical solution is reduced as
kr further increases. In summary, the applicability of
the theoretical prediction of Eq. (22) increases for both

kr small or very large, and the performance of Eq. (22)
is poor when kr0O(10) and when Ra is very large. A
more quantitative criterion can be established by asses-

sing the ratio of the conductive penetration time td
and the period of pulsation tp (02p/o ). This procedure
incorporates all the e�ects of kr, AW and other par-

ameters. Reviewing the numerical data, the validity of
the large-thickness conduction model of Eq. (22) may
be asserted when

td

tp

R10ÿ3 or
td

tp

r1: �24�

3.3.2. The convection-modi®ed model
It is clear that the e�ect of convection should be

included in any scheme to predict ed/e in the parameter
space 10ÿ3 R td/tp R 1, i.e. kr 0 O(10), from the
above-stated analysis. Again, this points to the situ-

ation in which the in¯uence of ¯uid convection, rela-
tive to the conduction in the solid, is signi®cant in
determining yint. To this end, an approximate ®tting

technique is devised by utilizing full-dress numerical
results. The conduction-based prediction for ed/e of
Eq. (22) is modi®ed by adding a factor fm(b ) to take

into account the convective activities, i.e.:

ed

e
� exp

"
ÿ fm

���������
otd

2

r #
: �25�

By substituting the complete numerical solutions

into ed/e, fm is evaluated, and the functional depen-
dence of fm on b is plotted in Fig. 5. The behavior of
fm(b ) is insensitive to Ra. An empirical formula can be

produced by ®tting a fourth-order polynomial to the

numerical data:

fm � 1:0845ÿ 0:24978bÿ 0:18049b 2

� 0:71558b3 ÿ 1:309b4: �25b�

The reasonableness of the present approach is mani-
fested in the exemplary plots of Fig. 6 for Ra = 106.
As remarked previously, when kr is small, the three

sets of results are mutually consistent. When kr r
O(10), the results of the large-thickness conduction
model of Eq. (22) demonstrate appreciable deviations
from the other two sets. To remedy this inadequacy,

the results of the convection-modi®ed model of Eq.
(25) are in satisfactory agreement with the full numeri-
cal solutions.

3.4. Finite-wall e�ect on resonance frequency

In the preceding model developmental e�ort, Kwak
and Hyun [7] asserted that resonance takes place when
the externally applied forcing frequency matches the

basic mode of natural frequency of the system. For the
buoyant convection in an enclosure, the natural fre-
quency is identi®ed to be the fundamental mode of in-
ternal gravity oscillations, which are supported by the

stable strati®cation of the enclosed ¯uid. It was
demonstrated in the subsequent studies [7,9] that the
theoretical predictions for the resonance frequency or,

based on the foregoing physical argument on internal
gravity oscillations, were in broad agreement with the
results of or obtained by the full numerical solutions

to the Navier±Stokes equations. These validations gave
support to the physical rationalizations embedded in
Kwak and Hyun [7].
Invoking the inviscid-¯uid assumption for Raw1,

the frequency of the basic mode of the internal gravity
wave in a square can be computed, by using the
present non-dimensional scheme ([19]), as

oi �
������
Ci

2

r
, �26�

in which Ci indicates the average vertical gradient of
density in the interior region of strati®ed ¯uid, namely,
the strength of interior strati®cation. The numerically
obtained values of Ci, in the range 0.2 R Y R 0.8 at X

= 0.5/Ar, are listed in Table 1. Here Ci is computed
from the cycle-averaged solutions, rather than the
basic state, because of the non-linearity at large value

of e [9]. The predicted values of oi of Eq. (26) were in
good agreement with the numerically acquired values
of or.

Sequential pictures over a cycle are provided in
Fig. 7 to demonstrate the evolutions of temperature
and ¯ow ®elds at resonance. As discussed by [8], the

Fig. 5. The modifying factor fm for the convection-modi®ed

model. w, Ra=107; and q, Ra=106.
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Fig. 7. Sequential pictures showing the evolutions of (a) temperature and (b) ¯ow ®elds. kr=100; e=1; o=0.77; and Ra = 107.

Time instants are shown for each frame. In (a), dashed lines indicate yr1. In (b), dashed lines indicate negative contour values.
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tilting of the isotherms in the interior is in evidence,
together with the cyclic motions.

4. Conclusions

A general formulation for enclosed buoyant convec-
tion with a vertical wall of ®nite-thickness has been

presented. For the case of non-pulsating boundary
temperature condition (e=0), a combination of ana-
lytical treatment and empirical relationship produces a

simple formula to predict the temperature Ti at the in-
terior surface of the wall. The predictions are shown to
be consistent with the results based on full Navier±
Stokes numerical solutions. Numerical computational

results have been examined to describe the ®nite-wall
e�ect when the temperature at the exterior surface of
the hot vertical wall has a pulsating component (e$0).

The results establish that A(Nu�) at the central plane
has a sharp peak at the resonance frequency or. As kr
decreases, the resonance frequency decreases slightly

and a substantial reduction is seen in the value of
A(Nu�). These ®ndings are qualitatively consistent with
the earlier assertions on physical rationalizations of

resonance phenomenon. The temperature oscillation at
the interior surface of the wall is estimated reasonably
well by a one-dimensional conduction model in the
solid, together with the convection model in the ¯uid.

An empirical correlation is proposed to depict the
explicit ®nite-wall e�ect on the interior-surface tem-
perature oscillations.
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